
Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 1

Janus-MM-4LP Linux Software User Manual
PC/104-Plus Dual or Quad CAN Port Module

Revision Date Comment

A.00 10/30/2015 Initial release

 Copyright 2015
 FOR TECHNICAL SUPPORT Diamond Systems Corporation
 PLEASE CONTACT: 555 Ellis Street
 Mountain View, CA 94043 USA
 support@diamondsystems.com Tel 1-650-810-2500
 Fax 1-650-810-2525
 www.diamondsystems.com

mailto:support@diamondsystems.com
http://www.diamondsystems.com/

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 2

CONTENTS

1. Important Safe Handling Information ...3
2. Introduction ...4

2.1 Description ...4
2.2 Features ...4
2.3 Operating System Support ..4
2.4 Mechanical, Electrical, Environmental ...4

3. Operating System ...5
4. PCI Shared Library installation ...5
5. Starting The Demo Application ...7
6. Configuring CAN ports ..8
7. Setting CAN Baud Rate ... 11
8. Changing CAN Baud Rate ... 12
9. Setting CAN ID and Message Length .. 13
10. Writing CAN Message ... 14
11. Transmitting CAN Message ... 15
12. Receive CAN Message .. 16
13. GPIO Test .. 17
14. Setting DIO as Input Port ... 18
15. Setting DIO as Output Port .. 19
16. FPGA ID and Board-ID .. 20
17. APIs to Configure and Manage CAN Ports ... 21

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 3

1. IMPORTANT SAFE HANDLING INFORMATION

WARNING!

ESD-Sensitive Electronic Equipment

Observe ESD-safe handling procedures when working with this product.

Always use this product in a properly grounded work area and wear appropriate
ESD-preventive clothing and/or accessories.

Always store this product in ESD-protective packaging when not in use.

Safe Handling Precautions

This board contains a high density connector with many connections to sensitive electronic components. This
creates many opportunities for accidental damage during handling, installation and connection to other
equipment. The list here describes common causes of failure found on boards returned to Diamond Systems for
repair. This information is provided as a source of advice to help you prevent damaging your Diamond (or any
vendor’s) embedded computer boards.

ESD damage – This type of damage is usually almost impossible to detect, because there is no visual sign of
failure or damage. The symptom is that the board eventually simply stops working, because some component
becomes defective. Usually the failure can be identified and the chip can be replaced. To prevent ESD damage,
always follow proper ESD-prevention practices when handling computer boards.

Damage during handling or storage – On some boards we have noticed physical damage from mishandling. A
common observation is that a screwdriver slipped while installing the board, causing a gouge in the PCB surface
and cutting signal traces or damaging components.

Another common observation is damaged board corners, indicating the board was dropped. This may or may not
cause damage to the circuitry, depending on what is near the corner. Most of our boards are designed with at
least 25 mils clearance between the board edge and any component pad, and ground / power planes are at least
20 mils from the edge to avoid possible shorting from this type of damage. However these design rules are not
sufficient to prevent damage in all situations.

A third cause of failure is when a metal screwdriver tip slips, or a screw drops onto the board while it is powered
on, causing a short between a power pin and a signal pin on a component. This can cause overvoltage / power
supply problems described below. To avoid this type of failure, only perform assembly operations when the
system is powered off.

Sometimes boards are stored in racks with slots that grip the edge of the board. This is a common practice for
board manufacturers. However our boards are generally very dense, and if the board has components very close
to the board edge, they can be damaged or even knocked off the board when the board tilts back in the rack.
Diamond recommends that all our boards be stored only in individual ESD-safe packaging. If multiple boards are
stored together, they should be contained in bins with dividers between boards. Do not pile boards on top of each
other or cram too many boards into a small location. This can cause damage to connector pins or fragile
components.

Power supply wired backwards – Our power supplies and boards are not designed to withstand a reverse
power supply connection. This will destroy each IC that is connected to the power supply (i.e. almost all ICs). In
this case the board will most likely will be unrepairable and must be replaced. A chip destroyed by reverse power
or by excessive power will often have a visible hole on the top or show some deformation on the top surface due
to vaporization inside the package. Check twice before applying power!

Overvoltage on digital I/O line – If a digital I/O signal is connected to a voltage above the maximum specified
voltage, the digital circuitry can be damaged. On most of our boards the acceptable range of voltages connected
to digital I/O signals is 0-5V, and they can withstand about 0.5V beyond that (-0.5 to 5.5V) before being damaged.
However logic signals at 12V and even 24V are common, and if one of these is connected to a 5V logic chip, the
chip will be damaged, and the damage could even extend past that chip to others in the circuit

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 4

2. INTRODUCTION

2.1 Description

The Janus-MM-4LP-XT family of I/O modules offers two or four opto-isolated CANbus 2.0B ports plus 16 digital
I/O lines. Models are available in both the PC/104-Plus and PC/104 form factors. Janus-MM-4LP is based on
Xilinx Artix-7 FPGA. This core houses the CAN controller logic and digital I/O logic providing data rates up to
1Mbps. Each CAN port supports standard and extended frames as well as expanded TX and RX message
queues for enhanced performance. Each port has its own combination isolator and transceiver chip. The 16
digital I/O lines have a selectable voltage level of +3.3V or +5V.

2.2 Features

 2 or 4 CAN 2.0B compatible ports

 Data rates up to 1Mbps

 Supports standard 11-bit identifier and extended 29-bit identifier frames

 Extended TX and RX message queues for enhanced performance

 16 8-byte transmit message queues

 31 8-byte receive message queues

 16 receive filters

 Galvanically isolated transceivers

 500V port-to-host and port-to-port isolation

 Jumper selectable biased split termination for improved noise reduction

 16 digital I/O lines

 Latching I/O connectors for increased ruggedness

 PCI and ISA bus interfaces

2.3 Operating System Support

Windows Embedded 7 and Linux Ubuntu 12.04LTS

Basic CAN driver included with APIs and monitor program

2.4 Mechanical, Electrical, Environmental

 PC/104-Plus form factor compliant, 3.55” x 3.775” (90mm x 96mm) without wings

 -40°C to +85°C ambient operating temperature

 Power input requirements: +5VDC +/- 5%

 PCI (3.3V) and ISA (5V) host interfaces

 MIL-STD-202G shock and vibration compatible

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 5

3. OPERATING SYSTEM

Linux Ubuntu-12.04

4. PCI Shared Library installation

Note : The shared library installation only needs to be set up once.

Step-1: Login as the “root” user by using “sudo –s” command as shown in the below screen,
 $ sudo –s
 [sudo[password for user :

Step-2 : Change the working directory to the release directory where the release content is copied as shown
in the below screen.
 cd dsc_release/DSC_CAN4_PCI_V2.5_20150714

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 6

Step-3: Execute the “install” script which will install the required shared libraries as shown in the below
screen.

 ./install

After complete, install script it will display the message “Installation is complete”

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 7

5. Starting The Demo Application

Starting the demo application includes loading the driver and starting the application. It must be done with “root”
privileges.

Step-1: Login as the “root” user by using “sudo –s” command as shown in the below screen,
 $ sudo –s
 [sudo[password for user :

Step-2: Start the application by executing the “startApp” script as shown in the below screen.

./startApp

The above step will start the CAN demo application.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 8

6. Configuring CAN ports

The CAN Monitor demo application contains three tabs. Click on CAN Configuration 1 or 2 tab to configure the CAN
ports, or click on the GPIO Configuration tab to configure the GPIO lines. In first two tabs, any two CAN ports can be
configured using the “Configure” button provided on each tab.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 9

A Pop-up window will appear by clicking on the “Configure” button when selecting any two CAN ports for
each tab. After selecting, click on OK.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 10

Initially CAN numbers will be empty on each tab. After configuring the CAN ports, the selected CAN # number
will be displayed.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 11

7. Setting CAN Baud Rate

The baud rate for each port can be configured using the drop-down menu for the particular CAN port. After selecting
the desired baud rate, pressing “Connect” will configure the specified baud rate for that particular port.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 12

8. Changing CAN Baud Rate

To change the baud rate, click on “Disconnect” and select a new desired baud rate. Click on the “Connect” button.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 13

9. Setting CAN ID and Message Length

The CAN ID and message length can be configured by entering the desired values into the respective fields for that
particular port.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 14

10. Writing CAN Message

The CAN message data can be set by entering the desired CAN data into the Data (Hex) fields.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 15

11. Transmitting CAN Message

The configured CAN-ID, Len, and CAN message data can be transmitted using the “Write Message” button.
Transmitted messages will be displayed in the CAN message box for that particular CAN port.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 16

12. Receive CAN Message

Received CAN message will be displayed in the CAN message box for that particular CAN port.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 17

13. GPIO Test

Click on the GPIO Configuration tab to configure DIO Port-A and Port-B as either input ports or output ports.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 18

14. Setting DIO as Input Port

Click on DIO Port-A Input button to configure the DIO Port-A as an input port. In this case, Port-A value will be
displayed.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 19

15. Setting DIO as Output Port

Click on DIO Port-A Output button to configure the DIO Port-A as an output port. In this case, enter 8-bit port value
and click on the Ok button to write to Port-A.

Similarly, Port-B can be configured as either an input or output port.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 20

16. FPGA ID and Board-ID

FPGA ID: Displays FPGA version

 E.g. 0X1100:- it’s the Artix-7 series FPGA.

Board ID: Displays board ID

 0x1101:- PCI Board.

0X1100:- ISA Board.

Ports: Displays number of CAN ports it can be either 2 or 4 ports.

Interface: Displays interface it can be either ISA or PCI.

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 21

17. APIs to Configure and Manage CAN Ports

init_can(int can_ch): This API accepts the CAN interface number as an argument for the initialization. This will
initialize CAN#0, CAN#1, CAN#2, and CAN#3 ports.

This function will return CAN file descriptor (fd). The return value of this function should be retained for all subsequent
operations. Its prototype is defined in the can.h file. Declaring four CAN file descriptors which will retain its return
values.

#include “can.h”

// TO initialize CAN#0 channel, pass the argument value as 0 to init_can function as shown below.

//Other declaration

…

can_fd_0 = init_can(0) ; // Will initialize CAN#0 channel

Similarly, CAN#n can be initialized by passing ‘n’ as argument to init_can function as shown below

can_fd_n = init_can(n) ;

…

Where, n varies from 1 to 3.

Baud rate configuration.

set_baudrate() : This function will configure the baud rate for the specified CAN port. By default it will not configure
any baud rate.

// Set 500k Baud rate for CAN#n, where n varies from 0 to 3. Corresponding can fd values should be passed.

ret_val = set_baudrate(can_fd_0, CAN_SPEED_500K) ;

if (ret_val < 0)

{

printf("Error while setting the baud rate \n") ;

exit(0) ;

}

Use below macros for setting the different baud rates. These macros can also be found in can.h file.

CAN_SPEED_1M

CAN_SPEED_800K

CAN_SPEED_500K

CAN_SPEED_250K

CAN_SPEED_125K

CAN_SPEED_100K

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 22

CAN_SPEED_50K

CAN_SPEED_20K

CAN_SPEED_10K

CAN Transmit & Receive :

can_tx() & can_rx() : These function will be used to Transmit and Receive the CAN messages respectively.

CAN Transmit Prototype.

int can_tx(int can_fd, unsigned char msgType, unsigned int can_id, int len,unsigned char *data) ;

Assign the appropriate values, before calling the can_tx function.

can_fd_0: CAN descriptor, return value from init_can() function

msgType = MSG_STANDARD ; // or MSG_EXTENDED .

can_id = 0x12 ; // CAN ID, if the msgType is MSG_STANDARD then it can be 11-Bit CAN Message ID

// if the msgType is MSG_EXTENDED then it can be 29-Bit CAN Message ID

len = 4 ; // CAN Transmit Data Length

data : CAN message data.

data[0] = 0x1A ;

data[1] = 0xAB ;

data[2] = 0x22 ;

data[3] = 0x4D ;

ret_val = can_tx(can_fd_0, msgType, can_id, dlc, data) ;

if (ret_val < 0)

{

printf("Error while transmitting the CAN message.\n") ;

close(can_fd_0) ;

exit(0) ;

}

The above sample code will transmit the CAN Standard message with CAN ID=0x12 of data length=4 and message
data = {0x1A, 0xAB, 0x22, 0x4D } ;

CAN Receive Prototype.

int can_rx(int can_fd, unsigned char *msgType, unsigned char *rx_data, unsigned int *can_id, unsigned char
*can_msg_len) ;

Pass the appropriate pointers for calling the can_rx function.

if (can_rx(can_fd_0, &msgType, data, &can_id, &dlc))

{

Janus-MM-4LP Linux User Manual Rev A.00 www.diamondsystems.com Page 23

 If (msgType == MSG_STANDARD)

 {

 // Received message is CAN Standard Message.

}

else if (msgType == MSG_EXTENDED)

{

 // Received message is CAN Extended Message.

}

// dlc : Received CAN Data Length

// can_id : Will contain the CAN Message ID

// Data of dlc length

printf("ID=%x DLC=%d Data : ", can_id, dlc) ;

for (i=0; i< dlc; i++)

printf("%x ", data[i]) ;

printf("\n") ;

}

Example programs for both transmit and receive can be found in the CANLib directory for the reference.

Compiling CAN Application using CANLib Library

Export the Library path using below command.

export LD_LIBRARY_PATH=$ LD_LIBRARY_PATH:/path-to-CANLib

To compile the application, use the below command.

g++ can_app.c -lCAN –L/path-to-CANLib -o can_app

